Bayesian Posterior Estimation of Logit Parameters with Small Samples
نویسندگان
چکیده
منابع مشابه
Bayesian posterior estimation of logit parameters with small samples
Users may download and print one copy of any publication from the public portal for the purpose of private study or research You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright, please contact...
متن کاملBayesian Estimation of Parameters in the Exponentiated Gumbel Distribution
Abstract: The Exponentiated Gumbel (EG) distribution has been proposed to capture some aspects of the data that the Gumbel distribution fails to specify. In this paper, we estimate the EG's parameters in the Bayesian framework. We consider a 2-level hierarchical structure for prior distribution. As the posterior distributions do not admit a closed form, we do an approximated inference by using ...
متن کاملBayesian Sample Size Computing for Estimation of Binomial Proportions using p-tolerance with the Lowest Posterior Loss
This paper is devoted to computing the sample size of binomial distribution with Bayesian approach. The quadratic loss function is considered and three criterions are applied to obtain p-tolerance regions with the lowest posterior loss. These criterions are: average length, average coverage and worst outcome.
متن کاملBayesian Active Learning for Posterior Estimation
This paper studies active posterior estimation in a Bayesian setting when the likelihood is expensive to evaluate. Existing techniques for posterior estimation are based on generating samples representative of the posterior. Such methods do not consider efficiency in terms of likelihood evaluations. In order to be query efficient we treat posterior estimation in an active regression framework. ...
متن کاملApplying Bivariate Binomial/Logit Normal Models to Small Area Estimation
The U.S. Census Bureau’s SAIPE (Small Area Income and Poverty Estimates) program estimates poverty for various age groups for states, counties, and school districts of the U.S. We focus here on poverty estimates of school-aged (5-17) children for counties. The corresponding SAIPE production model applies to log transformed direct survey estimates for each county of the number of 5-17 year-olds ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sociological Methods & Research
سال: 2004
ISSN: 0049-1241,1552-8294
DOI: 10.1177/0049124104265997